|本期目录/Table of Contents|

[1]朱莉.非线性分数阶Volterra积分微分方程的SCW数值方法[J].厦门理工学院学报,2015,(3):96-101.[doi:10.3969/j.issn.1673-4432.2015.03.018]
 ZHU Li.Numerical Solution of Nonlinear FractionalOrder Volterra IntegroDiferential Equations by SCW[J].Journal of JOURNAL OF XIAMEN,2015,(3):96-101.[doi:10.3969/j.issn.1673-4432.2015.03.018]
点击复制

非线性分数阶Volterra积分微分方程的SCW数值方法(PDF)
分享到:

《厦门理工学院学报》[ISSN:1673-4432/CN:35-1289/Z]

卷:
期数:
2015年第3期
页码:
96-101
栏目:
应用数理科学
出版日期:
2015-06-30

文章信息/Info

Title:
Numerical Solution of Nonlinear FractionalOrder Volterra IntegroDiferential Equations by SCW
文章编号:
1673-4432(2015)03-0096-06
作者:
朱莉
(厦门理工学院应用数学学院,福建 厦门 361024)
Author(s):
ZHU Li
(School of Applied Mathematics,Xiamen University of Technology,Xiamen 361024,China)
关键词:
分数阶微积分SCWVolterra积分-微分方程算子矩阵Block Pulse函数
Keywords:
fractional calculusSCWVolterra integrodifferential equationsoperational matrixBlock Pulse functions
分类号:
O2422
DOI:
10.3969/j.issn.1673-4432.2015.03.018
文献标志码:
A
摘要:
推导第二类Chebyshev小波(SCW)分数阶算子矩阵,利用SCW 算子矩阵方法求解了一类非线性分数阶Volterra 积分微分方程.此方法将分数阶积分微分方程转化成非线性代数方程组求解,可以简化分数阶方程的求解,所得到的数值结果表明该方法是有效和精确的.
Abstract:
In this paper,we first derived the second Chebyshev wavelet (SCW) operational matrix of fractional integration.Then based on its results we proposed the SCW operational matrix method to solve a kind of nonlinear fractionalorder Volterra integrodifferential equations.The main characteristic of this approach is that it reduces the integrodifferential equations into a nonlinear system of algebraic equations that simplifies solution to the problem of fractional order equation.The obtained numerical results indicate that the proposed method is efficient and accurate for equations of this kind.

参考文献/References:

[1]MACHADO J T,KIRYAKOVA V,MAINARDI F.Recent history of fractional calculus[J].Commun Nonlinear Sci Numer Simul,2011,16(3):1 1401 153. [2]ROSSIKHIN Y A,SHITIKOVA M V.Application of fractional calculus for dynamic problems of solid mechanics:novel trends and recent result[J].Appl Mech Rev,2010,63:52. [3]DIETHELM K.The analysis of fractional differential equations[M].Berlin:SpringerVerlag,2010. [4]KACZOREK T.Selected problems of fractional systems theory[M].Berlin:SpringerVerlag,2011. [5]WEST B J,BOLOGNAB M,GRIGOLINI P.Physics of fractal operators[M].New York:Springer,2003. [6]CAPUTO M.Linear models of dissipation whose Q is almost frequency independentII[J].J Roy Austral Soc,1967,13:529539. [7]ZHU L,FAN Q B.Solving fractional nonlinear Fredholm integrodifferential equations by the second kind Chebyshev wavelet[J].Commun Nonlinear Sci Numer Simulat,2012,17(6):2 3332 341. [8]KILLICMAN A,ALZHOURZ A A.Kronecker operational matrices for fractional calculus and some applications[J].Appl Math Comput,2007,187:250265. [9]SAEEDI H,MOHSENI M M.Numerical solution of nonlinear Volterra integrodifferential equations of arbitrary order by CAS wavelets[J].Commun Nonlinear Sci Numer Simulat,2011,16:1 2161 226.

相似文献/References:

备注/Memo

备注/Memo:
[收稿日期]2014-07-07[修回日期]2014-11-13 [基金项目]厦门理工学院高层次人才项目(YKJ12029R) [作者简介]朱莉(1984-),女,讲师,博士,研究方向为微分方程数值解.Email:zhulwhu@163.com
更新日期/Last Update: