|本期目录/Table of Contents|

[1]邱志敏,戴坤成.局部不变量下USimon猜想的证明[J].厦门理工学院学报,2017,(5):90-94.
 QIU Zhimin,DAI Kuncheng.Proof of U.Simons Conjecture Based on Local Invariants〖WT〗〖JZ〗QIU Zhimin,DAI Kuncheng[J].Journal of JOURNAL OF XIAMEN,2017,(5):90-94.
点击复制

局部不变量下USimon猜想的证明(PDF)
分享到:

《厦门理工学院学报》[ISSN:1673-4432/CN:35-1289/Z]

卷:
期数:
2017年第5期
页码:
90-94
栏目:
应用数理科学
出版日期:
2017-10-30

文章信息/Info

Title:
Proof of U.Simons Conjecture Based on Local Invariants〖WT〗〖JZ〗QIU Zhimin,DAI Kuncheng
文章编号:
1673-4432(2017)05-0090-05
作者:
邱志敏戴坤成
(福州理工学院工学院,福建 福州 350506)
Author(s):
QIU ZhiminDAI Kuncheng
(College of Engineering,Fuzhou Institute of Technology,Fuzhou 350506,China)
关键词:
USimon猜想局部不变量调和浸入能量密度高斯曲率
Keywords:
U.Simons conjecturelocal invariantsharmonic immersionsenergy densityGaussian curvature
分类号:
O1861
DOI:
-
文献标志码:
A
摘要:
为证明除s=1,2之外的其余正整数条件下的USimon猜想,在USimon猜想中加入一个加强条件,考虑二维黎曼流形到标准球面的调和浸入f:(M,ds2M)→(Sn,ds2N),推导出调和浸入下局部不变量满足的公式,证明了局部不变量下的U.Simon猜想。研究表明,此方法可为USimon猜想的证明提供一种新的思路。
Abstract:
In order to prove the unsolved U.Simons conjecture under positive integers other than s=1,2,we added a strengthening condition to U.Simons conjecture,considered the harmonic immersion from twodimonsional Riemann manifold to the standard sphere f:(M,ds2M)→(Sn,ds2N) and deduced the formula of local invariants under harmonic immersion that the U.Simons conjecture based on local invariants was proved.Research shows that this method provides a new approach to U.Simons conjecture problems.

参考文献/References:

[1]〖ZK(〗BENKO K,KOTHE M,SEMMLER K D,et al.Eigenvalues of the laplacian and curvature[J].Colloquium Mathematicu,1979,42:1931.〖ZK)〗[2]〖ZK(〗KOZLOWSKI M,SIMON U.Minimal immersions of 2manifolds into sphere[J].Mathematische Zeitschrift,1984,186(3):377382.〖ZK)〗[3]〖ZK(〗EELLS J.Harmonic mappings of riemannian manifolds[J].American Journal of Mathematics,1964,86(1):109160.〖ZK)〗[4]〖ZK(〗丘成桐,孙理察.调和映照讲义[M].北京:高等教育出版社,2008:14.〖ZK)〗[5]〖ZK(〗CHERN S S.On the minimal immersions of the twosphere in a space of constant curvature[J].Journal of Princeton University,1969,37:2740.〖ZK)〗[6]〖ZK(〗CHERN S S,GOLDBERG S I.On the volume decreasing property of a class of class of real harmonic mappings[J].American Journal of Mathematics,1975,97(1):133147.〖ZK)〗[7]〖ZK(〗SHEN Y B.Isometric immersions in minkowski spaces[J].Journal of Applied Mathematics,2014,94:327344.〖ZK)〗[8]〖ZK(〗QIAN C,TANG Z.Recent progress in isoparametric functions and isoparametric hypersurfaces[J].Springer Proceedings in Mathematics & Statistics,2014,106:6576.〖ZK)〗〖HT〗

相似文献/References:

备注/Memo

备注/Memo:
[收稿日期]2017-07-13〓〓〓〓[修回日期]2017-10-07〖HTH〗[作者简介]〖HTSS〗〖ZK(〗邱志敏(1987-),男,助教,硕士,研究方向为算法、微分几何,〖BF〗Email:1396809027@qq.com〖BFQ〗。
更新日期/Last Update: