|本期目录/Table of Contents|

[1]李西振,管典安.调和拟共形Bloch函数的性质[J].厦门理工学院学报,2020,(5):93-96.[doi:1019697/jcnki16734432202005015]
 LI Xizhen,GUAN Dian an.Some Properties of Harmonic Quasiconformal BlochType Mapping[J].Journal of JOURNAL OF XIAMEN,2020,(5):93-96.[doi:1019697/jcnki16734432202005015]
点击复制

调和拟共形Bloch函数的性质(PDF/HTML)
分享到:

《厦门理工学院学报》[ISSN:1673-4432/CN:35-1289/Z]

卷:
期数:
2020年第5期
页码:
93-96
栏目:
应用数理科学
出版日期:
2020-10-30

文章信息/Info

Title:
Some Properties of Harmonic Quasiconformal BlochType Mapping
文章编号:
16734432(2020)05009304
作者:
李西振管典安
厦门工学院计算机与人工智能学院, 福建 厦门 361021
Author(s):
LI XizhenGUAN Dian an
College of Computer and Artificial Intelligence,Xiamen Institute of Technology,Xiamen 361021,China
关键词:
调和拟共形函数Bloch型函数界限估计
Keywords:
harmonic quasiconformal mappingBlochtype functionbound estimate
分类号:
O17455
DOI:
1019697/jcnki16734432202005015
文献标志码:
A
摘要:
将调和Bloch型函数的定义应用到调和拟共形函数,在给出调和拟共形Bloch函数定义的基础上,分析调和拟共形函数线性和复合性质。研究提出调和拟共形Bloch型函数的判别法则, 并给出它的一个判定定理以及β(f)的界限估计。
Abstract:
We apply the definition of harmonic Blochtype functions to harmonic quasiconformal functions,and obtain the definition of harmonic quasiconformal Blochtype functions.By establishing the linear and composite properties of harmonic quasiconformal mapping,we give a criterion of them and a bound estimate of β(f).

参考文献/References:

[1] POMMERENKE C.On Bloch functions[J].Journal of London Mathematical Society,1970,2:689695. [2] ANDERSON J M,CLUNIE J,POMMERENKE C.On Bloch functions and normal functions[J].Journal of Reine Angew Mathematical,1974,270:1237. [3] ZHU K.Operator theory in function spaces[M].New York:Marcel Dekker Inc, 1990:120. [4] PAVLOVIC M.On the HollandWalsh characterization of Bloch functions[J].Proc Edinb Mathematical Society,2008,51(2):439441. [5] EFRAIMIDIS I ,GAONA J ,HERNNDEZ R.On harmonic Blochtype mappings[J].Complex Var Elliptic,2017,62(8):1 0811 092. [6] LEWY H.On the nonvanishing of the Jacobian in certain onetoone mappings[J].Bulletin of the American Mathematical Society,1936,42(10):689693. [7] AHLFORS L V,EARLE C J.Lectures on quasiconformal mappings[M].2nd ed.[S.l.]:American Mathematical Society,1966:125. [8] DANIKAS N.Some Banach spaces of analytic functions,function spaces and complex analysis[J].University of Joensuu Department of Mathematical Rep,1997,2:935. [9] POMMERENKE C.Boundary behaviour of conformal maps[M].Berlin:SpringerVerlag,1992:115. [10] SEIDEL J ,WALSH L.On the derivatives of functions analytic in the unit circle and their radii of univalence and of pvalence[J].Transactions American Mathematical Society,1942,52:128216. [11] HERNNDEZ R,MARTIN M J.PreSchwarzian and Schwarzian derivatives of harmonic mappings[J].Journal of Geometric Analysis,2015,25(1):6491. [12] BEARDON A,MINDA D.The hyperbolic metric and geometric function theory[J].Quasiconformal Mappings and Their Applications,2007:956. [13] CHEN S ,PONNUSAMY S.John disks and Kquasiconformal harmonic mappings[J].Journal of Geometric Analysis,2017,27(2):1 4681 488.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20200820修回日期:20201020 基金项目:福建省中青年教师教育科研项目(JAT190959) 厦门工学院校级科研项目(KYT2019022) 通信作者:李西振,男,助教,硕士,研究方向为函数论,Email:741296642@qq.com。
更新日期/Last Update: